Tuesday, January 28, 2020
Levers in the Body
Levers in the Body First-class Levers Typical examples of first-class lever are the crowbar, seesaw, and elbow extension. An example of this type of lever in the body is seen with the triceps applying the force to the olecranon (F) in extending the nonsupported forearm (W) at the elbow (A). Other examples of this type of lever may be seen in the body when the agonist and the antagonist muscle groups on either side of a joint axis are contracting simultaneously with the agonist producing force while the antagonist supplies the resistance. A first-class lever is designed basically to produce balanced movements when the axis is midway between the force and the resistance. When the axis is close to the force, the lever produces speed and range of motion (triceps in elbow extension). When the axis is close to the resistance, the lever produces force motion (crowbar). In applying the principle of levers to the body it is important to remember that the force is applied where the muscle inserts in the bone and not in the belly of the muscle. For example, in elbow extension with the shoulder fully flexed and the arm beside the ear, the triceps applies the force to the olecranon of the ulna behind the axis of the elbow joint. As the applied force exceeds the amount of forearm resistance, the elbow extends. This type of lever may be changed for a given joint and muscle, depending on whether the body segment is in contact with a surface such as a floor or wall. For example, we have demonstrated the triceps in elbow extension being a first-class lever with the hand free in space where the arm is pushed upward away from the body. By placing the hand in contact with the floor, as in performing a push-up to push the body away from the floor, the same muscle action at this joint now changes the lever to second class because the axis is at the hand and the resistance is the body weight at the elbow joint. In a first class lever, the weight and force are on opposite sides of the fulcrum: A small force can be used to advantage over a heavy weight if a long force armà or lever arm can be used. Examples of this lever include scissors, crowbars, andà teeter-totters. An example of a first-class lever is the joint between the skull and the atlasà vertebrae of the spine: the spine is the fulcrum across which muscles lift theà head. Here the fulcrum lies between the effort and the load. In our bodies, a lever of the first class can be found when the head undergoes nodding movements, i.e. when the occipital condyles articulate with the facets of the atlas. The weight of the face and the head are the resistance. The contraction of the neck muscles is the effort to lift the weight. Another example of a lever of the first class is when the bent arm is straightened . A lever of the first class serves a twofold purpose, i.e. it increases the speed of movement and it overcomes the resistance. In doing so, the resistance (load) is moved in the opposite direction. http://www.botany.uwc.ac.za/Sci_Ed/grade10/manphys/images/man/1_class.gif Lever of the first class Second Class Lever This type of lever is designed to produce force meovements, since a lage rsistance can be moved by a relatively small force. An example of a second-class lever is a wheelbarrow. Besides the example given before of the triceps extending the elbow in a push-up another similar example of a second-class lever in the body is plantar flexion of the foot to raise the body up on the toes. The ball of the foot (A) serves as the axis of rotation as the ankle plantar flexors apply force to the calcaneus (F) to lift the resistance of the body at the tibial articulation (W) with the foot. There are relatively few occurrences of second-class levers in the body. In the second class lever, the load is between the fulcrum and the force: A smaller effort can be used to advantage over a larger weight. An example ofà this lever is a wheelbarrow. An example in the human body of a second-class lever is the Achillesà tendon, pushing or pulling across the heel of the foot. Here the load lies between the fulcrum and the effort. A lever of the second class operates on the same principle as a wheelbarrow. A small upward force applied to the handles can overcome a much larger force (weight) acting downwards in the barrow. Similarly a relatively small muscular effort is required to raise the body weight. In our bodies, a lever of the second class can be found in our feet when we stand on our toes and lift our heels of the ground. The resistance (load) is the weight of our body resting on the arch of the foot. The effort is brought about by the contraction of the calf muscle attached to the heel. This leverage allows us to walk. The main purpose of a lever of the second class is to overcome the resistance. http://www.botany.uwc.ac.za/Sci_Ed/grade10/manphys/images/man/2_class.gif Lever of the second class Third Class Lever With this type of lever the force being applied between the axis and the resistance, are designedà to produce speed and range of motion movements. Most of the levers in the hman body are of thisà type, which require a great deal of force to move even a small resistance. Examples include aà screen door operated by a short spring and application of lifting force to a shovel handle with theà lower hand while the upper hand on the shovel handle serves as the axis of rotation. The bicepsà brachii is a typical example in the body. Using the elbow joint (A) as the axis, the biceps appliesà force at its insertion on the radial tuberosity (F) to rotate the forearm up, with its center of gravityà (W) serving as the point of resistance application. The brachialis is an example of true third-class leverage. It pulls on the ulna just below the elbow,à and since the ulna cannot rotate, the pull is direct and true. The biceps brachii, on the other hand,à supinates the forearm as it flexes, so that the third-class leverage applies to flexion only.à Other examples include the hamstrings contracting to flex the leg at the knee while in a standingà position and using the iliopsoas to flex the thigh at the hip.à In the third class lever, the force is between the fulcrum and the load: In this case, there is no force advantage force is NOT increased. In fact, aà larger force is actually needed to move a smaller weight, so there is a forceà disadvantage. The use of this lever is in the gain in speed of movement of theà weight. Examples of this lever class include: The inside door handle of a car, the coiledà spring pulling on a screen door, a pair of finger-nail clippers, and tweezers.à An example of a third-class lever in the human body is the elbow joint: whenà lifting a book, the elbow joint is the fulcrum across which the biceps muscleà performs the work. Here the effort lies between the fulcrum and the load. In our bodies, an example of a lever of the third class is when the biceps contracts, allowing us to lift something in our hand. The elbow is the fulcrum, the hand and its contents are the resistance (or load) and the biceps muscles creates the effort. The load can be moved rapidly over a large distance, while the point of application moves over a relatively short distance. The main purpose of this type of lever is to obtain rapid movement. http://www.botany.uwc.ac.za/Sci_Ed/grade10/manphys/images/man/3_class.gif Lever of the third class More Information About Levers A Brief Review F A lever is characterized by a fulcrum, a force arm and a weightà arm. F The force arm is the distance from the fulcrum to the point whereà force is applied. F The weight arm is the distance from the fulcrum to the center ofà gravity of the weight. à ´Ã¢â ¬Ã¢â¬Å¡Ãâ First Class Lever: The fulcrum is between the force andà the weight. à ´Ã¢â ¬Ã¢â¬Å¡Ãâ Second Class Lever: The weight is between the fulcrumà and the force. à ´Ã¢â ¬Ã¢â¬Å¡Ãâ Third Class Lever: The force is located between theà fulcrum and the weight. F Most of the movements of the body are produced by third classà levers. F Third class levers give the advantage of speed of movement ratherà than strength. F Second class levers give the advantage of strength. F First Class levers can give the advantage of strength or speedà depending on where the fulcrum is located. F Since the human body is made up mostly of third-class levers, itsà movements are adapted more to speed than to strength. (Shortà force arm/long weight arm) http://www.botany.uwc.ac.za/Sci_Ed/grade10/manphys/skel_mus.htm Relationship of the length of lever arms The resistance arm is the distance between the axis and the point of resistance application. The distance between the axis and the point of force application is known as the force arm. There is an inverse relationship between force and the force arm just as there is betweenà resistance and the resistance arm. The longer the force arm, the less force required to move theà lever if the resistance and resistance arm remain constant. In addition, if the force and force armà remain constant, a greater resistance may be moved by shortening the resistance arm. There is also a proportional relationship between the force components and the resistanceà components. For movement to occur when either of the resistance components increase, thereà must be an increase in one or both of the force components. Even slight variations in the locationà of the force and resistance are important in determining the effective force of the muscle. Decreasing the amount of resistance can decrease the amount of force needed to move the lever. The system of leverage in the human body is built for speed and range of movement at theà expense of force. Short force arms and long resistance arms require great muscular strength toà produce movement. In the forearm, the attachments of the biceps and triceps muscles clearlyà illustrate this point, since the force arm of the biceps is 1 to 2 inches and that of the triceps lessà than one inch. Many other similar examples are found all over the body. From a practical point ofà view, this means that the muscular system should be strong to supply the necessary force forà body movements, especially in strenuous activity. Most human activity, and especially strenuous activity, involves several levers working together. As with throwing a ball, levers in the shoulder, elbow, wrist, hand, and lower extremitiesà combine to propel the ball. It almost assumes the effect of one long lever from hands to feet. Theà longer the lever, the more effective it is in imparting velocity. Forces in the Body Athletes display some of the wonderful shows of force that the human body is capable of performing. Such force is only possible through the arrangement of the muscles, bones and joints that make up the bodys lever systems. Bones act as the levers, while joints perform as living fulcrums. Skeletal muscles create motion by pulling on tough cords of connective tissue called tendons. These tendons in turn pull on the bone which creates motion. Muscles move bones through mechanical leverage. As a muscle contracts, it causes the bone to act like a lever with the joint serving as a fulcrum. Muscle exerts force by converting chemical energy (created during respiration) into tension and contraction. When a muscle contracts, it shortens, pulling a bone like a lever across its hinge. Muscles move and this causes us to move. We are capable of performing a wide variety of movements, but, muscle itself moves only by becoming shorter. They shorten and then they rest a muscle can pull but it cannot push. There are almost 700 skeletal muscles of the human body, controlled by a few basic principles involving muscle movements or muscular activity. F Skeletal muscles produce movements by pulling on bones or tendons. The tendon gives a very firm anchorage. The point where a muscle is connected to a bone is called the point of insertion. F The bones serve as levers and joints act as fulcrums for the levers. Muscles can only contract a short distance, but since they are attached near a joint, the movement at the opposite end of a limb is greatly increased. The biceps muscle of the arm may contract only 89 to 90 mm, but the hand will move about 60 cm. F The skeletal or voluntary muscles act in pairs rather than singly. One of the muscles produces contraction while the other allows relaxation. Flexion (bending) occurs when contraction causes two bones to bend toward one another, while extension (straightening out) occurs from contraction of muscles, resulting in an increase in angle between two bones. Such pairs of muscles are called antagonistic. Often antagonistic muscles are in groups, for example, both the brachialis and the biceps muscles flex the arm at the elbow and antagonize the triceps, but only when the palm is facing upwards. In pairs or groups of antagonistic muscle, one is usually much stronger than the other. The biceps, which flex the arm are larger and more powerful than the triceps which extends it. F When the body is at rest, the some of the antagonistic skeletal muscles remain in a state of contraction, called muscle tone, which holds the body in rigid position. If the person becomes unconscious, or is asleep, muscle tone is lost as the muscles relax completely. Questions: 1. A first class lever has the ____________ in the middle. 2. Give an example of a first class lever: ____________________________ 3. Draw a diagram of a first class lever: 4. A second class lever has the ______________ in the middle. 5. Give an example of a second class lever:_________________________________ 6. Draw a diagram of a second class lever: Bones as Levers 8 M. Poarch 2002 http://science-class.net 7. A third class lever has the _______________ in the middle. 8. Give an example of a third class lever: ____________________________ 9. Draw a diagram of a third class lever: 10. For EACH of the three classes of levers, explain the advantage gained by using this type of lever. ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ 11. What type of lever do we find most often in the human body? ___________________________________________________________ 12. Explain how a muscle exerts force: ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ Bones as Levers 9 M. Poarch 2002 http://science-class.net 13. Examine the following diagrams, write down next to each picture which class of lever the picture represents and explain why: Lever in the body: Type of lever and why: Bones as Levers 10 M. Poarch 2002 http://science-class.net 14. Describe each of the following: a. Advantage (mechanical advantage) b. Antagonistic c. Effort d. Extension e. Flexion f. Force g. Force arm h. Fulcrum i. Insertion j. Joint k. Levers l. Limbs m. Load n. Muscle tone o. Resistance p. Tendon q. Weight arm 15. Circle and label each one example of each class of lever on the skeleton. Label the fulcrum, effort and load for each class of lever. GLOSSARY CENTER OF GRAVITY: The point in any solid where a single applied force could support it; the point where the mass of the object is equally balanced. The center of gravity is also called the center of mass. (When a man on a ladder leans sideways so far that his center of gravity is no longer over his feet, he begins to fall.) GRAVITATION (GRAVITY): The force, first described mathematically by Isaac Newton, whereby any two objects in the Universe are attracted toward each other. (Gravitation holds the moon in orbit around the earth, the planets in orbit around the sun, and the sun in the Milky Way. It also accounts for the fall of objects released near the surface of the earth. Objects near the surface of the earth fall at a rate of 32 feet per second.) FREE FALL: In physics, the motion of a body being acted on only by gravity. FRICTION: The force of one surface sliding, rubbing, or rolling against another. Friction slows down the motion of objects, and can create heat. Friction can also stabilize motion. FULCRUM: The fixed point about which the lever moves. The point at which energy is transferred. INERTIA: The tendency for objects at rest to remain at rest, and objects in uniform motion to continue in motion in a straight line, unless acted on by an outside force. LEVER: A rigid rod or bar to which a force may be applied to overcome a resistance. A lever (or a combination of levers) is a simple machine used to gain force, gain speed, or change directions. LEVERAGE: To wield power with levers. Understanding where the fulcrum is located allows us to position ourselves to gain our greatest leverage. MACHINE: A device (or system of devices) made of moving parts that transmits, send or changes a force. Machines are often modeled on how the human body works. SCIENCE: An organized body of information or HOW THINGS WORK! SIMPLE MACHINE: Machines powered by human force (as opposed to batteries, electricity or burning fuel) LOAD In bio-mechanics, the body mass is referred to as load. If an object is picked up, the load will be that of the body plus the object been picked up. The body weight place a load on the bone and muscle structures. If no load is applied, the body will stand still (inertia). To move the body load, force needs to be applied. A lighter body load requires less applied force to be moved and a stronger body will be able to move the body load faster. The secret of success is for the body to become stronger without the body gaining weight. 2.2. FORCE (MOTIVE FORCE) Force = Mass x Acceleration. Force is the strength of the muscle push or pull required to move the body mass (load). As long as the force applied on the muscle is equal to the load of the body, the body will not move and will be in equilibrium (state of rest). The force applied by the muscles must be bigger than the body mass (load) for the body to move. Strengthening the muscles will enable the body to apply a larger force on the bones. The more force muscles apply on the bones, the faster the movement of the limbs will be. The long jump run-up clearly demonstrates how the body angle change in accordance with the force applied. The body angle will change to accommodate the force applied. The key factor is how much strength training can be applied on the muscle in an attempt to develop force before an injury will occur in the form of a torn muscle or a broken bone. 2.2.1. Static force is a force that does not produce motion (The set position in the 100m start). 2.2.2. Centrifugal force is the force pulling outwards during rotation (The discus pulling in the hand during rotation). 2.2.3. Centripetal force is the force pulling inwards during rotation. (The force pulling in the shoulder while delivering a discus). 2.2.4. Eccentric force is an off-centre force. The centre of gravity in the human body is more or less situated at the navel. Delivering a shot needs an eccentric force to deliver the shot, as the shot is held next to the shoulder while delivering the shot. Eccentric force requires more muscle strength than force executed in line with the centre of gravity. In the sketch it can be seen that the shot is not in line (above) with the centre of gravity. The key-factor is to reduce movement away from the centre of gravity by either bringing the source that requires the applied force e.g. the shot, closer to the body to avoid muscle injury. 2.2.5. Internal forces will be the force that is applied by the muscles on the bones in the limbs. 2.2.6. External forces will be the force acting outside the body such as the gravity of the earth and friction between bodies such as the feet and the ground. 2.3. INERTIA Inertia is the bodys resistance to change position (Newtons 1st law Law of inertia). If no force is applied on the body, the body will not move. 2.3.1. Moment of inertia = mass x radius squared. Moment of inertia, normally a very short period of time, is the moment the body is standing still or in a state of rest e.g. in pole vault, the trajectory of the body will follow an upwards and downwards motion. At the point where upwards motion change to downwards motion, a moment of inertia will exist. 2.4. WORK Work is force x distance in the direction of force e.g. the amount of time the push or pull of the muscles is required to move the body over a 1500m x the 1500m = work required. The key factor is to develop the capacity of the body to operate at a work rate of e.g. 110% during training. The athlete will then be able to operate at 91% (100% à · 110%) during competition to achieve success, with less injury risk to the body. If an 800m athlete wants to run 60 seconds per 400m lap in competition, the training repetitions should be at 54.6 seconds. Training at repletion times of 54.6 seconds will enable the athlete run at 91% capacity and run a time of 60 seconds in per 400m lap. Mechanical work = product of weight lifted x distance lifted 2.5. GRAVITY Gravity is a force that is always present. It is the magnetic force of the earth which pulls objects vertically downwards to the centre of the earth. 2.5.1. Centre of gravity is the point in a body where force acts through. A solid body like the shot or discus will have a fixed centre of gravity but in the human body the centre of gravity will be determined by the position of the body. 2.6. TORQUE Torque is the force causing an object to rotate x length of lever arm e.g. a longer arm requires more force to deliver a javelin than a shorter arm. Key factor If sufficient force can be exerted on a longer arm, the longer arm is likely to generate more torque e.g. a longer arm will throw a javelin further than a short arm because more torque can be applied on the javelin during the process of delivery. 2.6.1. External unbalanced torque must be applied to create angular velocity. Newtons 1st law A body will remain at rest, or motion will be in a uniform straight line, until an external force is applied to change its direction is relevant. To deliver a javelin, an upward and forward movement of the arm is required. The arm holding the javelin will have to exceed the force required to move the javelin forward as well as to overcome the downward force of gravity, before a javelin will be able to travel in a temporary upwards trajectory after delivery. 2.7. AXIS An axis is a straight line about which a body rotates. 2.7.1. Vertical axis of the body passes through body from top to bottom when standing in the upright position. 2.7.2. Sagittal (also called anteroposterior) axis of the body is an axis parallel to the ground which passes through the body from front to back. Key factor The sprinter will move from start to finish as fast as possible without changing the distance of the sagittal axis from the ground (Moving up and down). 2.7.3. Frontal axis of the body is the axis parallel to the ground passing through the body from side to side e.g. the shortest distance between 2 points is a straight line. Key factor The sprinter will move from start to finish as fast as possible without changing the distance of the frontal axis from the sagittal axis (Moving side to side). 2.7.4. Horizontal (also called transverse) axis is an axis which is parallel to the ground and can be sagittal or frontal. The sketches below show how the 3 axiss is applied in bio-mechanics: 2.8. ACCELERATION When the body is moving, the speed that it is moving, and the time it takes to move from one point to the next point defines acceleration. Acceleration is the rate of change of velocity. Acceleration of the body is in proportion with the force applied by the muscles in the body. More force will ensure greater acceleration. 2.8.1. Angular acceleration is the rate of change of angular velocity e.g the angular acceleration of a high jumper crossing the cross bar. 2.8.2. Positive acceleration means the velocity increases faster and faster e.g. a sprinter running the 1st 100m of a 400m sprint. 2.8.3. Negative acceleration is velocity decelerating (slowing down) e.g. a sprinter running the last 100m of a 400m sprint and exhaustion is resulting in a reduced muscle force. 2.8.4. An object free falling downwards accelerates at 9.8m/sec. e.g. to deliver a javelin, the force applied must be more than the body mass, the mass of the javelin and gravity force. After delivery of the javelin in an upwards direction, gravity will continuously pull the javelin back to earth at a rate of 9.8m/sec. The point of return will be when the combined force of the body the javelin and gravity are reduced to a force less than the force of gravity (9.8m/sec). The trajectory of the javelin will consist of positive acceleration (going up), a moment of inertia (changing direction) and negative acceleration (going down). Key factor The bigger the eccentric force applied during the delivery of the javelin, the longer negative acceleration will be delayed. (The javelin will travel further before returning to the ground). 2.9. SPEED Speed is the rate of change of a position. For a sprinter speed will mean the stride length x stride frequency. For a jumper speed will mean the speed during take-off. For a thrower the speed will mean the speed during delivery of the implement. 2.10. VELOCITY Once the force applied on the body (muscle contraction), is bigger than the load (body mass), the body will start moving (positive acceleration). The speed per second that the body change position in a given direction = velocity. If a sprinter covers 100m in 10 seconds the velocity of the athlete will be 100 à · 10 = 10m/s. 2.10.1. Optimal velocity is sometimes called maximum velocity 2.10.2. Angular velocity is the angle through which the body turns per second e.g. during the period of time that the jumper travels through air after take off. 2.11. MOTION Motion is the continuous change of position. As long as force is applied, motion will take place e.g. as long as the athlete is running motion takes place. 2.11.1. Linear motion is movement in a straight line from one point to another e.g. a sprinter from start to finish. 2.11.2. Rotational motion is movement around an axis of rotation e.g. the arms and legs of a sprinter is moving in circular movements while moving forward. 2.11.3. General motion is a combination of linear motion and rotational motion e.g. In the 100m, the body of the sprinter is moving forward in a straight line but the arms and legs is moving in a circular motion. In discus the thrower moves from the back of the circle to the front of the circle while the body is turning around in circles in an attempt to gain maximum speed of the discus prior to delivery. 2.11.4. Uniform motion is steady, constant motion with unchanged speed e.g a 10000m athlete will try to run economically in an attempt to maintain the pace of running (uniform motion) as long as possible. 2.12. MOMENTUM Momentum is the quantity of motion of a moving body. Momentum = mass x velocity 2.12.1. Angular momentum is the moment of inertia x angular velocity 2.13. FRICTION The level of smoothness of two surfaces making contact will determine the level of friction. The smoother the surfaces, the more likely a gliding (slip) motion will appear when force is applied at an angle. A sprinter has to accelerate as fast as possible. To do this force has to be applied through the feet onto the ground in a running action to ensure forward movement. Fast acceleration may cause the feet to slip on the ground. To avoid slipping the friction between the feet and ground is increased. This is done by wearing spikes in the running shoes to create as much friction as possible between the surfaces of the track and the running shoes. 2.14. EQUILIBRIUM Equilibrium is another word for balance. When the resultant of all forces acting on a body are zero (neutralizing each other), the body is in equilibrium. A body at rest is in equilibrium. The sprinter in the set position is in equilibrium. When you lie still on a bed, the body is in equilibrium. The force of the body pressing against the bed and the force of the bed pushing back are equal, resulting in the body lying still. (Newtons 3rd law: Law of reaction For every action there is an equal and opposite reaction). 2.15. ENERGY Energy is the capacity to do work. There are 2 types of energy: 2.15.1. Potential energy When the body is standing still (equilibrium) no energy is used, but the potential for it to move is always there. 2.15.2. Kinetic energy is created when the forces applied on the body causes the body to move. The force applied to stop the body will equal the energy used to move. The more force is applied, the faster the body will move and the more kinetic energy the body will have. Injuries occur when kinetic energy is transferred to potential energy to quickly e.g. when the body come to a standstill due to external forces such as in a car accident, or the pull on the muscle is to big for the muscle to handle and the muscle will tear. It is important that once kinetic energy is created and the result is a fast moving object, the slowing down process must be within the capacity of the muscles that causes the decelerati
Monday, January 20, 2020
Illegal Downloading is Stealing :: essays research papers
Illegal Downloading ââ¬Å"isâ⬠Stealing à à à à à With the popularity of the Internet, sales for CDs, DVDs, Movies, and many other products have increased. Along with the increase of sales has brought forth an ever increasing problem of illegal media being downloaded. Programs such as Bittorent, Kazaa, and other direct-connect networking programs have allowed the transferring of such illegal media. Downloading song files from the Internet over a free peer to peer network is the moral equivalent of shoplifting music CDs from the local mall. à à à à à When you download any illegal media you are getting something for free that everyone else is required to pay a fee for. DVDs and CDs that cost others anywhere from 15 dollars to 60 dollars or more are being distributed for free as long as you have a download client. If you have programs such as Bittorent or Kazaa, you only have to find someone that already has the media on their computer, in which they either paid for the copies or they too downloaded the media illegally from someone else. On most of the ââ¬Å"realâ⬠media (the cases), it states that you are not to distribute or copy the material because it is an illegal act, and you will be punished if caught. à à à à à Not only is downloading this media illegal, it is also morally wrong. It is our responsibility to know the difference between right and wrong - downloading this media is something that shouldnââ¬â¢t be done. The artists that create the CDs pay a lot of money to make the CDs for our pleasure, and in return they expect everyone to pay for their CDs (its how they make their money). In this respect, downloading illegal music through peer to peer networks is the equivalent to stealing a CD from an actual store. à à à à à By downloading any type of media for free that is normally paid for through a store, unless so stated, you are breaking the law. There have been many laws written that forbid the downloading of any copyrighted materials such as music CDs, Movies, and computer programs. If you are caught downloading any of these types of media, or found to have any on your computer, you can and will be fined or even jailed. The same consequences would be applied if you were caught stealing from a store. As suggests, there is no difference if you steal from a store, or steal it through your computer.
Sunday, January 12, 2020
Assignment Unit
This brings a number advantages and disadvantages. Advantages Disadvantages Increases motivation ( when somebody gets raised, other employees become motivated to work hard in order to prolong their career in the organization), this can also raise the productivity of a firm More cost effective Less time consuming People already familiar with the business and how it operates (which in turn saves costs for training staff) Business already knows the strengths and weaknesses of candidates.Higher amount of salaries to be paid Competition for better vacancy between employees may prevent them from efficient team work and so damage a firm Causes other vacancies in your organization to be filled May cause resentment amongst candidates not appointed Limits the number of potential applicants External Recruitment ââ¬â is a process of filling existing job vacancies with people from outside of the organization.This also brings a number of advantages and disadvantages to the firm. Advantages Out side people may bring new creative ideas argue pool of workers from which to find the best candidate People from outside may have a wider range of experience Bringing in fresh talent from outside of the company roster can help motivate the current employees to achieve more in hopes of obtaining the next promotional opportunity. More time-consuming More expensive process due to advertising. Ewe staff trainings costs and interview required Selection process may occur to be not effective enough in order to reveal the lost candidate Job center ââ¬â is a place where people who are looking for work can go to get advice on finding a job, and to look at advertisements placed by people who are looking for new employees. Reference: http://www. Illuminations. Com/dictionary/English/job-centre Recruitment agency ââ¬â is a business that works for organizations to find people for jobs when the organizations need them.Reference: http:// Consultant ââ¬â a person who is not employed by t he business, but brought in to provide advice. Applying for a job There are several ways Of how people could apply for a job. These include application online (e. G. Via email or by the professional en;irking site), by telephone conversation and in person. To apply for a job in CEQ candidates have first to fill in the application form including C.V. and references, they then deed to email a covering letter to the school.All the applicants will then be shortlist and some will be invited for an interview where the second stage of selection process takes place. To apply for a job to 02, people have to write a covering letter and send it via email or upload to the website where job advertisement is published. Then they need to ring the firm and talk to the firm's representative in order to find out more detailed information on the recruitment process for this particular job. Where CEQ advertises The college advertises its vacancies on their website and on the TEST website ND TEST newspa per.There is a significant benefit coming from advertising on the CEQ website as it is free and so enables all people who are interested in working for CEQ to look at information about the school and be aware of when a vacancy occurs. Advertising on the TEST website and their newspaper is expensive, however, it is a good value for money as it is a national newspaper and the website can be accessed internationally, and so CEQ will reach its target market The only disadvantage is the cost of advertising through TEST.The cost, though, should outweigh the number of applicants applying for a job. Internal recruitment for CEQ Internal recruitment in CEQ takes place when someone takes a maternity leave, when someone is promoted and the vacancy arises or when a cover needed (such as for long term sickness). There is also a possibility of transferring boarding staff or teachers from one place to another if his/her skills and specifications allow this to happen. So, for example, house parent of Sixth Form girls' boarding house with a time and experienced gained may become the Head of Sixth Form Girls.Such a high vacancy imposes more responsibilities and so requires a perfect understanding of all the school rules ND their application to student Therefore, internal recruitment occurs to be more suitable, as candidate is already familiar with his responsibilities. This method of recruitment is also much quicker, as it's easier to find suitable candidate, as they all have been through selection process. External recruitment for CEQ In order to recruit workers externally, CEQ can use the recruitment agencies (such as Hays Recruitment), this will help to choose suitable candidate from a variety of applications.It saves time, as the agency does the selection process part and then matches employers to employees. This method of recruitment ay be used in CEQ when the college decides to provide new subject, therefore qualified staff has to be hired. Also CEQ may recruit externally if it needs to expand its labor force, this usually happens when the number of students in school increases. New experienced candidates may bring new teaching techniques or creative ideas. However, External type of recruitment is more expensive, as advertising takes place through mass media.Internal recruitment for 02 02 is a large company and so has a huge number of employees, therefore it may be easier for 02 to recruit internally choosing from a wide range of its in- Tate applicants. This enables the firm to save time and money (e. G. Training costs), as the candidate is already familiar with the system and how it does work, so he can effectively work towards the aims and objectives of the company. 02 may also decide to promote an employee, therefore vacancy will arise and workers will become more motivated.External recruitment for 02 02 can recruit externally using a phone interviews in order to seek more applicants; it then needs to monitor candidates in order to narrow the nu mber of applicants who then will be invited for an interview. When needed o recruit externally 02 may place its advertisement in different job centers to attract potential worker's attention, it also may invite recruitment consultants in order to select an appropriate candidate for a job.Those consultants interview the candidates, check their backgrounds, whether they were involved in crime or not and finally match them to company. 3. Planning and conducting recruitment Vacancies may arise due to the number of reasons such as: Creation of new job position Promotion of an employee which may cause a chain reaction of vacancies down the hierarchy High unemployment rates Salary difference between the competitors. New business requirements Low productivity and big workload Lack of high-qualified workers.CEQ vacancies may arise when someone go on maternity leave or become promoted, a new subject may be introduced in the school, increasing number of students, staff may leave or be retired which causes a staff turnover. When a high turnover due to introducing new job titles takes place, CEQ is likely to recruit externally. Similarly, 02 may fill the jobs gaps by recruiting externally if someone has a long-time sickness or when the business is expanding. An example of recent job vacancy in CEQ: Reference: http://www. Jackboots. Co. UK/job/626096/chef/ Example of recent vacancy in 02: Reference: http://www. Ethologic. Com/Jobsharer/ Unintentionally. Asps? Job I d lye Candidates can apply for these vacancies online using the websites in the links. When matching themselves to the personal specification and satisfied with the job description, they will then upload their C.V. to the website and wait for the invitation for the interview to Come. 4. Conclusion Considering all the information found in the research, we can conclude that both external and internal methods of recruitment have their downsides at en time while can benefit the company at another.To my mind, the exte rnal recruitment is more suitable for 02 as it is the international company which has its franchised stores all around the world so due to geographical immobility of most part of its current workers they will need to recruit people from outside anyway. External recruitment is also linked with ass's aim to expand. While CEQ is the local business and so it's more likely to prefer to use internal method of recruitment in order to save money and time (for training and selection process) and have staffs with an experience of working for CEQ.However, there are also exceptions of the rule. So, whether to recruit externally or internally fully depends on the specific situation. So, it's really important to consider the aim of the firm, the type of the vacancy it needs to find the candidate for, it's time and financial resources to go through recruitment process when deciding which method of recruitment is more appropriate. Task 2 1. Introduction to the Business department 2013-14 Here Mrs. Bradford-Ryder -?The head of Business, Economics, CIT and Enterprise introduces the Business department 2013-2014.As we can see, a to of plans have been developed including changes in B ETC Business course structure. As a student I faced these changes when I first arrived to the school. The Business department grown rapidly due to the increasing number of students willing to take courses in a Business & Economics related areas. Staff had to be recruited internally, as some previous fill-time staff left for other jobs, a maternity leave had to be covered and also some of the staff have been promoted.Due to those changes the new system was introduced in order to keep up With the productivity of Business Department 2. Explanation of changes to the department and reasons behind the need to recruit staff internally and externally From these overprints we can see how Business department has experiencing changes in order to comply with development plan and achieve all of its targets. As th e number of students increased rapidly, they recruited externally new workers in order to expand their labor force and so to provide Economics and business lessons to all students who seek this .By introducing new job titles such as Key Stage 4 Student Progress Coordinator they became able to control and record student SUccess or help them to solve robber more effectively. Working with individuals will with a time which increases the productivity of the whole Key Stage. The promotion of staff (which is internal method of recruitment) will motivate other members of Department work more efficiently in order to experience promotion in future, high motivation may increases productive of work for the whole department. While internal recruitment took place, the new job gaps arose and caused the department to hire even more new workers.
Friday, January 3, 2020
The Importance Of Relationships Within Early Learning
Introduction This weekââ¬â¢s article by MacQuarrie, Nugent and Warden (2015) looks at nature-based learning across several countries. It highlights key aspects and concerns of nature-based learning voiced by the participants of the study. When reading this article I took the stance that relationships are an important element when learning with nature and with others (MacQuarrie et al., 2015). I took this stance, as I believe that relationships within early learning are the key foundation to building a supportive and engaging learning environment that includes children, families, communities and educators. Synopsis The article by MacQuarrie et al (2015) is a research paper exploring childrenââ¬â¢s experiences with nature-based learning. MacQuarrie et al. (2015) conducted their research through to methods; a discussion group made up of 7 participants from international settings that could converse in English and case studies from nature-based learning programs in Scotland, Denmark and Finland (MacQuarrie et al., 2015). The data collected was broken into four broad themes, including local practice, global curiosity, Adult and child relationships in early childhood education, seeking clarity about practice and good practice (MacQuarrie et al., 2015). These four broad themes also had sub-theme break downs within them (MacQuarrie et al., 2015). Through the analyses of these themes MacQuarrie et al. (2015) found that practitioners shared, interest in how their peers from otherShow MoreRelatedGood Communication Skills are Essential for Early Childhood Education1306 Words à |à 6 Pages Good communication skills form a critical element of early childhood education. Communication consists of two main styles: Verbal and non-verbal. These styles of communication form the foundation of effective teaching and learning within the early childhood forum. A good early childhood educator will enhance learning and development with an extensive knowledge of both the verbal and non-verbal elements of communication. An early childhood educator will understand what constitutes good communicationRead MoreThe Role Of Primary Carers On Children1716 Words à |à 7 PagesBronfenbrenner recognised the importance of primary carers to children, his ecological system proposes that children are affected by many social factors and those closest to the child have the greatest impact. In the ecological system the parents and family are represented by the micro system, they are closest to the child and have the most influence them and their learning potential. (Bronfenbrenner, 1979). Ther efore it is essential that the early yearââ¬â¢s educator has a positive relationship with the parent forRead MoreWhat Role Do Relationships Play in Developing Positive Learning Environments?1726 Words à |à 7 PagesWhat role do relationships play in developing positive learning environments? Relationships play a very influential role in the development of a positive learning environment, as the relationship between the childââ¬â¢s immediate environment and settings all need to co-exist and work collaborative together, to form a positive learning environment. Relationships need to be formed, as it provides for the child with consistent support and can assist the child to develop skills and understandings they needRead MoreWhat Are The 3 And Their Meanings?1402 Words à |à 6 PagesThe EYLF (2009) aims to extend and enrich childrenââ¬â¢s learning from birth to five years with an overall vision stating, ââ¬Å"that all children experience learning that engages and builds success for lifeâ⬠(p. 5). Children begin to develop interest and construct their own identities and understandings of the world by participating in everyday life experiences (DEEWR, 2009). What are the 3 Bs and their meanings? â⬠¢ Belonging is defined as ââ¬Å" knowing where and with whom you belongâ⬠by acknowledging childrenââ¬â¢sRead MoreRationale Statement : The Development And Implementation Of The Curriculum1639 Words à |à 7 PagesRationale Statement: ââ¬Å"Relationships are the foundation of the development and implementation of the curriculum for the infants and toddlers. Responsive caregiving and use of individual caregiving routines(for example, nappy changing, meals, sleep) provide the frame for curriculum implementation. Parents should be involved to take appropriate decision about the childrenââ¬â¢s learning and developmentâ⬠. Introduction: Over the past few years, research in neuroscience and developmental psychology has createRead MoreDiscuss the importance of partnerships in a child care setting and how these might be developed and maintained for the benefit of the children.1082 Words à |à 5 PagesCourse Title: Early Years Foundation Level 4 Assignment Number: Assignment 5 - Discuss the importance of partnerships in a child care setting and how these might be developed and maintained for the benefit of the children. Word Count: A practitioners job is not only to ensure the safety of the children and to plan structured day to day activities but also to ensure that various partnerships and created within the child care setting. Professional relationships are absolutelyRead MoreMy Personal Definition For School Curriculum Essay1677 Words à |à 7 PagesThe Early Years Learning Framework (EYLF) in relation to the strategic plan and teaching philosophy of Hampton Park East Kindergarten. EYLF for Australia guides Early Childhood Education in Australia today. The aim of this framework is to support childrenââ¬â¢s learning and development from birth to eight years. The framework provides a guideline for early childhood educators to foster childrenââ¬â¢s physical and mental development. Early childhood educators in Australia recognize the importance of familyRead MoreThis Chapter Will Provide The Theoretical Framework For1281 Words à |à 6 PagesThis chapter will provide the theoretical framework for training teachers for family engagement followed by a current and comprehensive literature review of: (1) Importance of family engagement, (2) Family engagement and educational equity, (3) Current state of teacher preparation for family engagement, (4) Teachersââ¬â¢ beliefs and attitudes towards family engagement, and (5) Best practices for teacher preparation. Following the literature review, the summary at the end of the chapter will proposeRead MoreA Critique - Reggio Emilia Approach a Educational Philosophy1120 Words à |à 5 Pagesteaching their children. I enjoy the fact that this is a child ââ¬âcentered educational program that features working with art. In the Reggio Emilia School, children are viewed as powerful and capable. Children are validated as unique individuals within a social group. They are provided space and time to work alone and in small groups and also to come together as a community. Reggio Emilia teachers embody a collaborative spirit by working together as a center wide team and with the families, theirRead MoreCommunication: A Fundamental Part of the Early Childhood Teachers Role1725 Words à |à 7 PagesThis essay will discuss communication as being a fundamental part of the early childhood teacherââ¬â¢s role. Educators will communicate with many people during the course of their day. Developing positive relationships through open communication is a strategy that will benefit teachers, parents and most importantly, their students. Teachers must establish limits and expectations for students, not only in the classroom, but within individual lessons. Behaviour management is an essential skill that will
Subscribe to:
Posts (Atom)